

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

layout: play-with-tweek
title: Play With Tweek
permalink: /play-with-tweek
hide: true

 layout: page title: First setup permalink: /getting started/first-setup

layout: page
title: First setup
permalink: /getting started/first-setup

The easiest way to experience Tweek, is to setup a playground environment.There are several ways to do it:

	Create online playground environment - using play-with-tweek (quickest, experimental)

	Create local playground environment - using docker-compose

Local - Run Locally using docker-compose

	clone Tweek’s repo (git clone https://github.com/Soluto/tweek.git)

	go to deployments/dev (cd tweek/deployments/dev)

	(optional) pull the images instead of building (docker-compose pull --parallel)

	run (docker-compose up) - this might take a few minutes the first time

 layout: page title: Using Tweek permalink: /getting started/using tweek

layout: page
title: Using Tweek
permalink: /getting started/using tweek

Edit your first key

After setting up our environment, we’re going to create our first key.
Keys in tweek are the most basic building blocks and they represent a container for dynamic value that affect feature behaviors.
Our first key, will be a key that is responsible for the color of a “sign up” button.

	Open http://localhost:8081/login in browser.

	Login

	User Basic auth (user: admin-app, password: 8v/iUG0vTH4BtVgkSn3Tng==)

	Can also use OIDC mock server login button for testing OIDC (user: User, password: pwd)

	Go to keys page.

	Click on “Add Key”

	Type my_app/sign_button/color

	Set value type to String

	Add default value “red”

	Save changes

	Click on “Add Rule”

	Set Property to Country (user) and set “=” and “Canada” in the other fields

	In Rule value set the value “blue”

	Click “Save changes”

More on keys and paths [https://tweek.soluto.io/concepts/keys/keys-ands-paths]

Querying Tweek

Use curl/postman/chrome to fire GET Request:

	http://localhost:8081/api/v2/values/my_app/sign_button/color -> expected to be “red”

	http://localhost:8081/api/v2/values/my_app/sign_button/color?user.Country=canada -> expected to be “blue”

	http://localhost:8081/api/v2/values/my_app/sign_button/_?user.Country=canada -> expected to be {”color”:”blue”}

Using the rest api, an application can query Tweek for getting the right set of values for each specific user.
More on Tweek Rest api [https://tweek.soluto.io/reference/openapi].

Adding context data

Tweek provide UI and rest api for editing context.

	Go to context

	Set Identity Type to User

	Set User id to John

	Click enter

	Set value “Canada” for property Country

After that, we can query Tweek API with:

	http://localhost:8081/api/v2/values/my_app/sign_button/color?user=john -> expected to be “blue”

You can also use the api for updating Tweek context:

	curl -X POST http://localhost:8081/api/v2/context/user/john -H ‘content-type: application/json’ -H ‘x-client-id: admin-app’ -H ‘x-client-secret: 8v/iUG0vTH4BtVgkSn3Tng==’ -d ‘{
“country”: “Canada”
}’

More on Context. [https://tweek.soluto.io/concepts/context/intro-to-context]

Gradual Feature Release

Create new key in the editor “my_app/sign_button/is_enabled” with value type “boolean” and default value False.Add new rule, remove all conditions, set the the rule value to gradual release with 50%.
Try querying configuration with different users and You’ll have different results.

	http://localhost:8081/api/v2/values/my_app/sign_button/is_enabled?user=barny

	http://localhost:8081/api/v2/values/my_app/sign_button/is_enabled?user=robin

	http://localhost:8081/api/v2/values/my_app/sign_button/is_enabled?user=ted

	http://localhost:8081/api/v2/values/my_app/sign_button/is_enabled?user=lily

	etc…

More on how multi-variant keys work in Tweek. (link)

 layout: page title: Keys and paths permalink: /concepts/keys/keys-ands-paths

layout: page
title: Keys and paths
permalink: /concepts/keys/keys-ands-paths

Key paths

Every key in tweek represent a dynamic value that is accessible by path.Key paths share similar structure and semantics of a file system paths or windows registry.Key paths are also compatible with urls, which make them very friendly to access by REST endpoints.Keys should be organized based on application context (service. UI Component, BL module).Additionally, keys should be descriptive to product owners.

Styling/Structure Guidelines

	Lower case

	Snake case (separated with “_”)

	No special characters: a-z, 0-9

	Prefixes are delimited by “/”

	Intuitive name that relates to the feature/flow/code

	Gradual name structure - make sure to think on code consumption (structure should support consuming a subset of configurations only)

	“@” prefix represent keys which are not discoverable by scan queries.

Examples

	my_app/onboarding/supported_screens

	my_service/user_discovery/is_enabled

	my_worker/collection_interval

Dependent keys

Some of the keys in Tweek are used to create complex rules, or allow better control and reuse of rules.
These keys can be marked with “@” prefix so they won’t be discoverable by scan operations.

 layout: page title: Dependent Keys permalink: /concepts/keys/dependent-keys

layout: page
title: Dependent Keys
permalink: /concepts/keys/dependent-keys

TBD

 layout: page title: Intro to context permalink: /concepts/context/intro-to-context

layout: page
title: Intro to context
permalink: /concepts/context/intro-to-context

What is context?

Context is a collection of all the facts available in a single Tweek evaluation.
Context is evaluated against key’s rules to retrieve the value, meaning:

Context + key definition = value

For example, assuming we have a key is_allowed_to_drive with rule:

default value: falseUser.Age > 18 then true

If we send these requests to Tweek:

GET http://localhost:8081/api/v2/values/is_allowed_to_drive -> false
GET http://localhost:8081/api/v2/values/is_allowed_to_drive?User.Age=20 -> true

In order to get the right values from Tweek, we need to provide Tweek the relevant context for the request.

Inline context vs remote context

While we can always pass context parameters in url, a different approach is to save context in Tweek for identity.
For example:

GET http://localhost:8081/api/v2/values/is_allowed_to_drive?User=john -> false

We’ve asked for the value of “is_allowed_to_drive” for user John, but Tweek doesn’t know any facts about him, let’s change it:

POST http://localhost:8081/api/v2/context/user/john
{
 "Age": 20
}

After adding the data, let’s retry our first request:

GET http://localhost:8081/api/v2/keys/is_allowed_to_drive?User=john -> true

Identities & Properties

You’ve noticed that we used “User.Age” and not simply “Age”, the reason is that Tweek treat facts as properties on top of identities, for example:

GET http://localhost:8081/api/v2/keys/path/to/key?User=john&User.Country=england

	Tweek understands that it need to get the values for identity user “john”.

	Tweek look at inline context to see relevant properties for this identity, for example “User.Country=england”

	Tweek look at remote context to get all properties for identity user “john”, from previous example it would be Age=20

	Tweek merge inline and remote context to a single context.

	Tweek evaluate the context against the requested key definition (rules)

	Tweek send the results back to the user

 layout: page title: Identities, properties and schema permalink: /concepts/context/schema

layout: page
title: Identities, properties and schema
permalink: /concepts/context/schema

Schema

Tweek allow to define schema for identities and their properties using special tweek keys.Usually, we’ll want to add identities and properties for our domain, for example adding the property ‘level’ to identity ‘user’
can be suited for gaming domain.

In order to do that, we can do it using the editor “settings” page.

This means we’ve just added a new property for our schema ‘user.level’ which use the type “number” (allow any json based number).Types that allowed are as follows:

	all primitve json types: string, number, bool

	date type

	external types defined under @tweek/custom/types/{typename}

	custom

Custom types

A custom type is a json value with the following properties:

{
 "base": "can be any other primitive type", //required
 "allowedValues": ["value1", "value2"], //optional - array that limit the number of options
 "comparer": "comparername", //optional, required to support additional comparison operators as >, <. (comparer need to be registered in api)
 "validation": "some regex string", //optional - regex for validating input, currently not used by editor/api
}

When using external types, the json properties are defined as tweek keys.
For example: version - custom type [https://github.com/Soluto/tweek/blob/master/services/git-service/BareRepository/source/manifests/%40tweek/custom_types/version.json]

 layout: page title: Intro permalink: /concepts/jpad/intro

layout: page
title: Intro
permalink: /concepts/jpad/intro

TBD

 layout: page title: Rules permalink: /concepts/jpad/rules

layout: page
title: Rules
permalink: /concepts/jpad/rules

TBD

 layout: page title: Querying Tweek permalink: /usage/querying-tweek

layout: page
title: Querying Tweek
permalink: /usage/querying-tweek

Client SDKs

Tweek has a REST client for javascript/typescript which is suited for both browser/node payload.

tweek-client [https://github.com/Soluto/tweek-clients/tree/master/js/tweek-client].

Additionally, there are rich clients for browser that offer batching and caching of requests and React (or react-native) integration. (via HOC or Hooks)

tweek-local-cache [https://github.com/Soluto/tweek-clients/tree/master/js/tweek-local-cache]react-tweek [https://github.com/Soluto/tweek-clients/tree/master/js/react-tweek]

OpenAPI clients

Tweek has an OpenAPI/Swagger specification and it’s possible to generate client SDKs, there’s a WIP repository with generated clients in c#/python/go/java/swift.

https://github.com/Soluto/tweek-openapi-clients

Basic Query

The main API for query Tweek is the values api, you can query it via curl:

https://tweek/api/v2/values/my_app/sign_button/color?user=lily

or

https://tweek/api/v2/values/my_app/sign_button/color?user.country=Canada

The equivalent JS code will be:

const tweekClient = createTweekClient({
 baseServiceUrl: 'https://tweek',
});

let color = await tweekClient.getValues('my_app/sign_button/color', {context: {user: "lily"}});

// OR
color = await tweekClient.getValues('my_app/sign_button/color', {context: {user: {country:"lily"}});

//It's also possible to set context when initializing the client
const client = createTweekClient({
 context: {user: "lily"},
 baseServiceUrl: 'https://tweek',
});

color = await client.getValues('my_app/sign_button/color');

You can see more examples at tweek-client documentation [https://github.com/Soluto/tweek-clients/tree/master/js/tweek-client]

API for managing Tweek

Tweek can be managed by its apis, the editor itself is a SPA that use the javascript client.
For complete api reference, check the OpenAPI spec [https://tweek.soluto.io/reference/openapi]

 layout: page title: Create new key permalink: /usage/editor/create-new-key

layout: page
title: Create new key
permalink: /usage/editor/create-new-key

 layout: page title: Dependency between keys permalink: /usage/editor/dependency-between-keys

layout: page
title: Dependency between keys
permalink: /usage/editor/dependency-between-keys

TBD

 layout: page title: Define identity schema permalink: /usage/editor/define-identity-schema

layout: page
title: Define identity schema
permalink: /usage/editor/define-identity-schema

 layout: page title: Override keys permalink: /usage/editor/override-keys

layout: page
title: Override keys
permalink: /usage/editor/override-keys

 layout: page title: Security model permalink: /security/security-model

layout: page
title: Security model
permalink: /security/security-model

Authentication

Tweek users/apps are recognized as pair of group+user commonly refered as subject.

Tweek can map JWT token from external systems (OIDC/OAUTH2) to a subject by using a subject extraction policy
based on OpenPolicyAgent’s (https://openpolicyagent.org) Rego language.
Tweek can login and verify tokens form multiple multiple external OIDC providers.

A common use case is to use an external OIDC provider such as Google/Azure/Auth0 for auditing and managing access
for Tweek editor.
Client apps (browser/mobile) can use the same mechanism for fetching values or writing to context.
Tweek also support credentials creation for external apps. (pair of client-id, client-secret)

Additionally, it’s possible to generate an admin token by signing a JWT token with the publishing repo private key
which have full access to all Tweek api.

Authorization

Tweek has an ACL mechanism for controlling access to resources.
The ACL is based on a JSON policy file.

 layout: page title: Examples permalink: /security/examples

layout: page
title: Examples
permalink: /security/examples

Gateway config

Configuration example for token validations from popular OIDC providers.
Can be edited via k8s configmap, mounted config file, or using environment variables.

"providers": {
 "azure": {
 "name": "Azure",
 "issuer": "https://sts.windows.net/{tenantId}/",
 "authority": "https://sts.windows.net/{tenantId}/",
 "jwks_uri": "https://login.microsoftonline.com/common/discovery/keys",
 "client_id": "{client_id}",
 "login_info":{
 "login_type": "azure",
 "additional_info": {
 "resource": "{client_id}",
 "tenant": "https://sts.windows.net/{tenantId}/"
 },
 "scope": "openid profile email",
 "response_type": "id_token"
 }
 },
 "google": {
 "name": "Google",
 "issuer": "https://accounts.google.com",
 "authority": "https://accounts.google.com",
 "jwks_uri": "https://www.googleapis.com/oauth2/v3/certs",
 "client_id": "{client_id}",
 "login_info": {
 "login_type": "oidc",
 "additional_info": {
 },
 "scope": "openid profile email",
 "response_type": "id_token"
 }
 },
 "oidc": {
 "name": "Mock OpenId Connect server",
 "issuer": "http://localhost:4011",
 "authority": "http://localhost:4011",
 "jwks_uri": "http://oidc-server-mock/.well-known/openid-configuration/jwks",
 "client_id": "tweek-openid-mock-client",
 "login_info": {
 "login_type": "oidc",
 "additional_info": {},
 "scope": "openid profile email",
 "response_type": "id_token"
 }
 },
 }

JWT Extraction

Map JWT token to a user role and group.
Written in OPA’s rego language [https://www.openpolicyagent.org/docs/latest/how-do-i-write-policies/]

This example -

	map JWT issued by Google to:

	Group: editors

	User: {email}

	map JWT issued by Azure to:

	Group: editors

	User: {upn}

	Other users are with valid JWT will get the group default with user: {sub}

This file can be edited via the editor UI (settings/security/policies/JWT Extraction)

package rules

default subject = { "user": null, "group": null }

subject = { "user": input.email, "group": "editors" } { # Google
 input.iss = "https://accounts.google.com"
 input.aud = "{client-id}"
 input.hd = "{example.com}"
} else = { "user": input.upn, "group": "editors" } { # Azure
 input.iss = "https://sts.windows.net/{client-id}/"
} else = { "user": input.sub, "group": "default" } {
 true
}

Policies config

Access policies for Tweek.
This example allow editor Permission (edit keys, context, …) for editors group and allow all (include anonymous) users to read/calculate values.

This file can be edited via the editor UI (settings/security/policies/acl)

"policies": [
 {
 "group": "editors",
 "user": "*",
 "contexts": {
 "*": "*"
 },
 "object": "*",
 "action": "*",
 "effect": "allow"
 },
 {
 "group": "editors",
 "user": "*",
 "contexts": {
 "tweek_editor_user": "self"
 },
 "object": "values/*",
 "action": "*",
 "effect": "allow"
 },
 {
 "group": "editors",
 "user": "*",
 "contexts": {},
 "object": "repo/keys/*",
 "action": "write",
 "effect": "allow"
 },
 {
 "group": "editors",
 "user": "*",
 "contexts": {},
 "object": "repo",
 "action": "read",
 "effect": "allow"
 },
 {
 "group": "editors",
 "user": "*",
 "contexts": {},
 "object": "repo/tags",
 "action": "write",
 "effect": "allow"
 },
 {
 "group": "editors",
 "user": "*",
 "contexts": {},
 "object": "repo/schemas",
 "action": "write",
 "effect": "allow"
 },
 {
 "group": "*",
 "user": "*",
 "contexts": {
 "user": "*"
 },
 "object": "values/*",
 "action": "*",
 "effect": "allow"
 }
]

 layout: page title: Intro permalink: /deployment/intro

layout: page
title: Intro
permalink: /deployment/intro

Tweek is a distributed multi container app, being develop with container platform and tooling in mind,
the easiest way to run Tweek is on a container orchestration platform. (Kubernetes, Swarm)

Tweek is dependent on two durable storage services:

	Git storage (can be any git server/service), used for storing JPAD/Polices/etc files

	Context Storage (can be Redis/Couchbase/MongoDB)

When deploy Tweek to a new environment it’s worth checking how to consume these storage services (self hosted, or managed by Cloud/3rd party).The context storage backend is relevant for global HA scenarios as every Tweek “values” request can potential query this storage.

You can find recipes and examples on how to install Tweek in production on:
https://github.com/soluto/tweek-deploy

Deploying on Public cloud

Tweek has a Pulumi (https://pulumi.io/) scripts for create a Kuberentes cluster with Tweek based on the cloud provider managed Kubernetessolution:

	AWS - EKS [https://github.com/Soluto/tweek-deploy/tree/master/pulumi/aws]

	Azure - AKS [https://github.com/Soluto/tweek-deploy/tree/master/pulumi/azure]

	GCP - GKE [https://github.com/Soluto/tweek-deploy/tree/master/pulumi/GCP]

The benefit of using this approach is that the control plane for Kubernetes can be free or cheap when using the managed solutions.
Additonally, all services can run easily on a single instance and it easy to scale Tweek to several machines if necessary

Deploying to Existing Kubernetes cluster

Tweek has an helm chart for installing on existing k8s cluster:
https://github.com/Soluto/tweek-deploy/tree/master/helm/tweek

Tweek helm chart uses k8s persistent volumes, but it might be desired to use external storage for durability/availability.

 layout: page title: Architecture permalink: /deployment/architecture

layout: page
title: Architecture
permalink: /deployment/architecture

Tweek Core Services

	Gateway - front facing endpoint serves web and api calls. Responsible for enforcing API Policies and forwarding requests to relevant microservices

	API - Tweek core engine, calculate values and read/write to context

	Editor - Client web app for editing Tweek keys, context, policies, etc…

	Authoring - REST API for editing Tweek keys definition, policies.

	Publishing - Git proxy, validates key/policies definition, create and upload keys/policies bundles to Minio and update Git upstream.

Tweek dependencies

	Git - Storage for all keys data and policies

	Context DB - Store all identities’ context and key overrides (can be Redis/Couchbase/Mongodb)

	Minio/S3 - Object storage for policies/keys bundles

	Nats - pub/sub for sending updates on bundle updates

	OIDC provider/s - used to validate JWT tokens

Diagram

[image: ../../_images/architecture.png]architecture

	All blue components are Tweek services

Typical update key flow

	User browse the editor (via gateway url)

	User select a key, update and save it

	Editor send update request to gateway

	Gateway validate request and forward to authoring

	Authoring update the relevant key files and push to publishing

	Publishing run partial validation (complication, circular dependencies, etc…)

	Publishing update the git upstream

	Publishing create a new bundle of all keys and upload to object storage (Minio/s3)

	Publishing send nats update

	Api get notified by nats update

	Api download the latest bundle

	Api can now calculate values based on the new key definition.

We think on update a key as typical “code update flow”.
we start by updating the key (which is represented by manifest and rules files), push to git.
Publishing does validation and deployment of the new “code” and serve as the “CI/CD” pipeline.
After the code was validated and the bundle was uploaded, the api service fetch the latest version.

 layout: page title: Setup permalink: /deployment/setup

layout: page
title: Setup
permalink: /deployment/setup

Tweek use RSA keys for communication between the services, and for accessing git storage.

Generating keys

In order to generate this keys, use the script in Tweek repo:
https://github.com/Soluto/tweek/blob/master/utils/generate_keys.sh

Mounting the keys

In each service you should mount the relevant files, and configure the service using environment variables:

	GIT (public)

	PUBLIC_KEY_PATH=/run/secrets/id_rsa.pub

	API (pfx)

	PUBLIC_KEY_PATH=/run/secrets/certificate.pfx

	Editor (private)

	GIT_PRIVATE_KEY_PATH=/run/secrets/id_rsa

	Authoring (private, public)

	GIT_PUBLIC_KEY_PATH=/run/secrets/id_rsa.pub

	GIT_PRIVATE_KEY_PATH=/run/secrets/id_rsa

	Publishing (private, public)

	GIT_PUBLIC_KEY_PATH=/run/secrets/id_rsa.pub

	Gateway (Private)

	TWEEKGATEWAY_SECURITY_TWEEKSECRETKEY_PATH=/run/secrets/tweek_ssh_private_key

All public/private keys can be also consumed as base64 value environment variables (add example).

Linking Git repository

Publishing service should work against an upstream git repo (can be hosted anywhere, Github, Gitlab, CodeCommit, etc…):

	Publishing

	GIT_PUBLIC_KEY_PATH=/run/secrets/tweek_ssh_public_key

	GIT_SERVER_PRIVATE_KEY_PATH=/run/secrets/id_rsa # or use a different one, depend on upstream

	GIT_UPSTREAM_URI=ssh://git@git/tweek/repo

Linking Between services

Most services are configured by default to talk to each other, but if you want to customize it:

	Api

	-> Minio

	-> Nats

	Publishing

	-> Minio

	-> Nats

	Gateway

	-> Minio

	-> Nats

	-> Api

	-> Authoring

	-> Publishing

	-> Editor

	[Optional] Editor -> Gateway (REACT_APP_GATEWAY_URL)

Example configurations

You can checkout dev [https://github.com/Soluto/tweek/blob/master/deployments/dev] folder for compose/swarm configuration docker-compose.

There’s a also a Kubernetes example [https://github.com/Soluto/tweek/tree/master/deployments/kubernetes]

 layout: page title: Setup permalink: /deployment/monitoring

layout: page
title: Setup
permalink: /deployment/monitoring

Health checking

Tweek Gateway expose health endpoints at:

	http://tweek/health (check the health of the gateway)

	http://tweek/status (check the status of all Tweek upstreams)

Both endpoints can return only 200 status code.

A status result example:

{
 "repository revision": "f56b389882fbe5431bc83dabf7755f2c10c13fd4",
 "services": {
 "api": {
 "healthy": {
 "CouchbaseConnection": "OK",
 "EnvironmentDetails": "Host = 3a3e561de09f, Version = 1.0.0-rc10",
 "LocalHttp": "OK",
 "QueryHealthCheck": "OK",
 "RulesRepository": "CurrentLabel = f56b389882fbe5431bc83dabf7755f2c10c13fd4, LastCheckTime = 07/27/2020 08:09:30"
 },
 "status": "Healthy"
 },
 "authoring": {},
 "publishing": {}
 }
}

Additonally, each Tweek service has a “/health” status that will return error status code if there’s a problem.

These endpoints can be used with k8s readiness/liveness probes, Docker healthchecks, etc…

Monitoring

Both the api and the gateway expose metrics promethus metrics at “/metrics”

Gateway service metrics:

request_duration_seconds (summary)
request_duration_seconds_histogram (histogram)

Api service uses the default webapp metrics defined at https://app-metrics.io

Logging

All Tweek services’ logs are written to std, and can be collected with tools such as FluentD.

 layout: page title: Api permalink: /deployment/configuration/api

layout: page
title: Api
permalink: /deployment/configuration/api

Tweek api service can be configured by setting environment variables or by mounting /app/appsettings.Production.json file.
In the json format, keys are configured as nested objects:

{
 "Some": {
 "Module": {
 "Url": "http://module:3000"
 }
 },
}

The equivalent environment variable configuration is:

Some__Module__Url=http://module:3000

Context configuration

Tweek context provider is pluggable as an addon.

For Redis provider, add the following configuration:

- UseAddon__Context=RedisContext
- Addons__Redis__AssemblyName=Tweek.Drivers.Redis
- Redis__ConnectionString=*******

For Couchbase provider add:

- UseAddon__Context=CouchbaseContext
- Couchbase__BucketName": "tweek-context"
- Couchbase__Password": "pass", #bucket password
- Couchbase__Url: "http://couchbase-url/"

For In-Memory context provider add:

- UseAddon__Context=InMemoryContext

Rules configuration

Tweek rules provider is pluggable as an addon.

For Minio provider, add the following configuration:

UseAddon__Rules: MinioRules
Rules__Minio__AccessKeyPath: /path/to/minio_access_key
Rules__Minio__Bucket: tweek
Rules__Minio__Endpoint: minio:9000
Rules__Minio__SecretKeyPath: /path/to/minio_secret_key

For File System provider, add the following configuration:

UseAddon__Rules: FileSystemRules
Rules__FileSystem__FilePath: /var/rules/rules_file

Monitoring

Tweek support Application Insights [https://azure.microsoft.com/en-us/services/application-insights/] and Prometheus [https://prometheus.io/] (through AppMetrics [http://app-metrics.io/]) for monitoring providers.
Exposed metrics are available under http://api/metrics.

Tweek api has support for writing logs and metrics to Application Insights, to use it, add the following configuration:

- UseAddon__Metrics= ApplicationInsights
- ApplicationInsights__InstrumentationKey=*******

 layout: page title: Gateway permalink: /deployment/configuration/gateway

layout: page
title: Gateway
permalink: /deployment/configuration/gateway

 layout: openapi title: OpenAPI permalink: /reference/openapi

layout: openapi
title: OpenAPI
permalink: /reference/openapi

 Overview

Overview

Allows setting hooks on keys (including the * wildcard). Only notification webhooks are supported at this time.
Paths for hooks implicitly start after the implementations/manifests prefixes.

UI

Hooks can be edited in the settings page, under the Hooks entry in the menu.
There are also links from the key page to create or view hooks for this key.

Storage

Centralized storage in a JSON file at the git repo. Format:

[
 {
 "id": "auto_generated_uid",
 "keyPath": "path/to/key",
 "type": "notification_webhook",
 "format": "json",
 "url": "http://some-domain/awesome_hook"
 },
 {
 "id": "auto_generated_uid",
 "keyPath": "wildcard/path/*",
 "type": "notification_webhook",
 "format": "json",
 "url": "http://some-other-domain/another_awesome_hook"
 }
]

API

All GET APIs return an ETag header and all POST/PUT/DELETE APIs can optionally accept an If-Match header.

List all hooks

GET /api/v2/hooks/?keyPathFilter=url_encoded_key_path

The keyPathFilter query param is optional and filters results to that exact keyPath (not evaluating wildcards)

Response:

[
 {
 "id": "auto_generated_uid",
 "keyPath":"path/to/key",
 "type":"notification_webhook",
 "format": "json",
 "url":"http://some-domain/hook"
 },
 {
 "id": "auto_generated_uid",
 "keyPath":"path/to/key",
 "type":"notification_webhook",
 "format": "json",
 "url":"http://anoth